Generating QAP instances with known optimum solution and additively decomposable cost function
نویسنده
چکیده
Quadratic assignment problems (QAPs) is a NP-hard combinatorial optimization problem.QAPs are often used to compare the performance ofmeta-heuristics. In this paper, we propose aQAPproblem instance generator that can be used for benchmarking for heuristic algorithms. Our QAP generator combines small size QAPs with known optimum solution into a larger size QAP instance. We call these instances composite QAPs (cQAPs), and we show that the cost function of cQAPs is additively decomposable. We give mild conditions for which a cQAP instance has known optimum solution. We generate cQAP instances using uniform distributions with different bounds for the component QAPs and for the rest of the cQAP elements. Numerical and analytical techniques that measure the difficulty of the cQAP instances in comparison with other QAPs from the literature are introduced. These methods point out that some cQAP instances are difficult for local search with many local optimum of various values, low epistasis and non-trivial asymptotic behaviour.
منابع مشابه
Multi-objective Quadratic Assignment Problem Instances Generator with a Known Optimum Solution
Multi-objective quadratic assignment problems (mQAPs) are NP-hard problems that optimally allocate facilities to locations using a distance matrix and several flow matrices. mQAPs are often used to compare the performance of the multi-objective meta-heuristics. We generate large mQAP instances by combining small size mQAP with known local optimum. We call these instances composite mQAPs, and we...
متن کاملAnalysis of Ideal Recombination on Random Decomposable Problems
This paper analyzes the behavior of a selectorecombinative genetic algorithm (GA) with an ideal crossover on a class of random additively decomposable problems (rADPs). Specifically, additively decomposable problems of order k whose subsolution fitnesses are sampled from the standard uniform distribution U [0, 1] are analyzed. The scalability of the selectorecombinative GA is investigated for 1...
متن کاملA greedy genetic algorithm for the quadratic assignment problem
The Quadratic Assignment Problem (QAP) is one of the classical combinatorial optimization problems and is known for its diverse applications. In this paper, we suggest a genetic algorithm for the QAP and report its computational behavior. The genetic algorithm incorporates many greedy principles in its design and, hence, we refer to it as a greedy genetic algorithm. The ideas we incorporate in ...
متن کاملAn Algorithm for Construction of Test Cases for the Quadratic Assignment Problem
In this paper we present an algorithm for generating quadratic assignment problem (QAP) instances with known provably optimal solution. The flow matrix of such instances is constructed from the matrices corresponding to special graphs whose size may reach the dimension of the problem. In this respect, the algorithm generalizes some existing algorithms based on the iterative selection of triangl...
متن کاملIncorporating Domain Knowledge in Matching Problems via Harmonic Analysis
Matching one set of objects to another is a ubiquitous task in machine learning and computer vision that often reduces to some form of the quadratic assignment problem (QAP). The QAP is known to be notoriously hard, both in theory and in practice. Here, we investigate if this difficulty can be mitigated when some additional piece of information is available: (a) that all QAP instances of intere...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comb. Optim.
دوره 30 شماره
صفحات -
تاریخ انتشار 2015